Maximum marks: 20 Marks **Duration: 30 Minutes**

Answer all the questions. Each question carries 1 mark

20 x 1 = 20

1. For any positive integers a and 3, there exist unique integers q and r such that a = 3q + r, where r must satisfy

(a) $0 \le r < 3$

(b) 1 < r < 3

(c) 0 < r < 3

(d) $0 < r \le 3$

2. The HCF and LCM of two numbers are 33 and 264 respectively. When the first number is completely divided by 2 and the quotient is 33. The other number is:

(a) 66

(b) 130

(c) 132

(d) 196

3. The decimal expansion of number has:

(a) a terminating decimal

(b) non-terminating but repeating

(c) non-terminating non repeating

(d) terminating after two places of decimal

4. The least number that is divisible by all the numbers from 1 to 10 is:

(a) 10

(b) 100

(c)2060

(d) 2520

5. The H.C.F of 441, 567 and 693 is:

(a) 1

(b) 441

(c) 126

(d) 63

6. If $U = \{1,2,3,4,5\}$ and $A = \{2,4\}$ then A' should be

 $(a){2,4,5}$

(b) $\{2,4\}$

(c) {1,2,3,4,5}

(d) $\{1,3,5\}$

7. A set containing only one element is said to be

(a) Subset

(b) singleton set

(c)power set

(d)empty set

8. If 2 sets A and B are given, then set consisting of all common elements of A and B, then it is called

(a) Intersection of A and B

(b) union of A and B

(c) Complement of A

(d) Complement of B

9. If $A = \{2, 3, 4, 5, 6\}$ and $B = \{4, 5, 6, 7\}$ then $A \cap B$ should be

(a) $\{2, 3, 4, 5, 6, 7\}$ (b) $\{4, 5, 6, 7\}$

(c) $\{4, 5, 6\}$

 $(d) \{0\}$

10. For a set A and the universal set U, $(A \cup Ac)$

(a) A

(b) Ac

(d) U

11. Which one is not a polynomial?						
(a) $4x^2$	+2x-1	(b)	$y + \frac{3}{y}$	(c) x ³ -	- 1	(d) $y^2 + 5y + 1$
12. The zero of the polynomial $p(x) = 2x + 5$ is						
(a) 2		(b) 5		(c) $\frac{2}{5}$		(d) $-\frac{5}{2}$
13. The value of k, if $(x - 1)$ is a factor of $4x^3 + 3x^2 - 4x + k$, is						
(a) 1		(b) 2		(c) -3		(d) 3
14. If $x + y = 0$	$=3, x^2+y^2=$	5 then 2	xy is			
(a) 1		(b) 3		(c) 2		(d) 5
15. If one of the factors of $x^2 + x - 20$ is $(x + 5)$. Find the other						
(a) $x-4$	1	(b) 2	x + 2	(c) x +	-4	(d) x-5
16. If $x = a$, $y = b$ is the solution of the pair of equation $x - y = 2$ and $x + y = 4$ then what will be value						
of a and b						
(a) 2,1		(b) 3	5,1	(c) 4,6		(d) 1,2
17. Graphically pair of equations $7x - y = 5$, $21x - 3y = 10$ represents two lines which are						
(a) intersecting at one point (b) intersecting at two points (c) parallel lines (d) consistent						
18. If $x = a$, $y = b$ is the solution of the equations $x + y = 5$, $2x - 3y = 4$, then the values of a and b are respectively						
(a) 6, -1		(b) 2	2, 3	(c) 1,	4	(d) 19/5, 6/5
19. The graph $x = -2$ is a line parallel to						
(a) x-axis		(b) y-axis		(c) both	h x and y axis	(d) none of these
20. The graph of the equation $2x + 3y = 5$ is						
(a) parabo	ola	(b) str	raight line	(c) smo	ooth curve	(d) none of these